Name:    Lesson 5 - Subtracting Polynomials

Match each polynomial expression with a tile model.
 a. b. c.

1.

(5x2 - 4x + 5) - (2x2 - 3x + 2)

2.

(-4x2 + 5x - 5) - (-2x2 + 3x - 1)

3.

(4y2 - 3xy + 6) - (3y2 - xy + 4)

Match each step of the polynomial subtraction with the tile model.
 a. b. c.

4.

Model the polynomial (3x2 + 4x - 2).

5.

Use the zero principle to subtract (5x2 - 2x + 5).

6.

Model the polynomial difference.

7.

What is the simplified polynomial for this difference?

(3x2 + 2x 1) (7x2 3x + 5)

 a. -4x2 + 5x - 6 c. -4x2 - 5x - 6 b. 10x2 - 5x + 6 d. 4x2 - x - 4

8.

What is the simplified polynomial for this difference?

(4y2 5y + 3) (2y2 + 8y 1)

 a. -y2 - 3y + 2 c. -2y2 + 13y - 4 b. 6y2 + 3y - 2 d. -6y2 - 13y + 4

9.

What is the simplified polynomial for this difference?

(5y2 7xy 4x2) (7y2 + 2xy 4x2)

 a. -2y2 - 9xy + 8x2 c. 12y2 - 9xy b. 2y2 - 5xy - 8x2 d. 2y2 + 5xy

10.

The perimeter of this triangle is 3x + 4y - 5.
Which expression represents the unknown side?

 a. 2x - y b. 3y - 8 c. y + 3x + 1 d. 6x - y - 2