Name: 
 

Lesson 10.2: Probability of Independent Events



 1. 

Emily wanted to determine the probability of rolling a sum of 6 with two dice.
She constructed this table of the sample space to help her.

mc001-1.jpg
Die 1
mc001-2.jpg
mc001-3.jpg
mc001-4.jpg
mc001-5.jpg
mc001-6.jpg
mc001-7.jpg





Die 2
mc001-8.jpg    
1 + 1 = 6
 
mc001-9.jpg   
4 + 2 = 6
  
mc001-10.jpg  
3 + 3 = 6
   
mc001-11.jpg 
2 + 4 = 6
    
mc001-12.jpg
1 + 5 = 6
     
mc001-13.jpg      

How many possible sums are there when rolling two dice?
a.
6
b.
36
c.
18
d.
12
 

 2. 

Use the sample space from question 1 to determine the probability of rolling a sum of 6 with two dice.
a.
mc002-1.jpg
b.
5
c.
31
d.
mc002-2.jpg
 

 3. 

Use the sample space from question 1 to determine the probability of rolling a sum of 4 with two dice.
a.
mc003-1.jpg
b.
mc003-2.jpg
c.
mc003-3.jpg
d.
3
 

 4. 

Use the sample space from question 1 to determine the probability of rolling an odd sum with two dice.
a.
17
b.
mc004-1.jpg
c.
mc004-2.jpg
d.
mc004-3.jpg
 

 5. 

Use the sample space from question 1 to determine the probability of not rolling a sum of 7.
a.
mc005-1.jpg
b.
30
c.
mc005-2.jpg
d.
mc005-3.jpg
 

 6. 

Rick spins a prize wheel. His prize money will be the sum of two spins. Use the prize wheel below to answer the following questions.
mc006-1.jpg
How many possible outcomes are there?
a.
36
b.
24
c.
12
d.
6
 

 7. 

What is the probability that Rick will win $500?
a.
1
b.
mc007-1.jpg
c.
mc007-2.jpg
d.
0
 

 8. 

What is the probability that Rick will win $600 or more?
a.
mc008-1.jpg
b.
mc008-2.jpg
c.
18
d.
mc008-3.jpg
 

 9. 

What is the probability that Rick will win $1000 or more?
a.
12
b.
mc009-1.jpg
c.
mc009-2.jpg
d.
mc009-3.jpg
 

 10. 

What is the probability that Rick will win $200 or less?
a.
mc010-1.jpg
b.
mc010-2.jpg
c.
6
d.
mc010-3.jpg
 



 
Check Your Work     Start Over